Here Lun method will be demonstrated clearly and hope that this document can help you.
Before simulating datasets, it is important to estimate some essential parameters from a real dataset in order to make the simulated data more real. If you do not have a single-cell transcriptomics count matrix now, you can use the data collected in simmethods package by simmethods:data
command.
library(simmethods)
library(SingleCellExperiment)
# Load data
ref_data <- simmethods::data
dim(ref_data)
# [1] 4000 160
Using simmethods::Lun_estimation
command to execute the estimation step.
estimate_result <- simmethods::Lun_estimation(ref_data = ref_data,
verbose = T,
seed = 10)
# Estimating parameters using Lun
After estimating parameter from a real dataset, we will simulate a dataset based on the learned parameters with different scenarios.
The reference data contains 160 cells and 4000 genes, if we simulate datasets with default parameters and then we will obtain a new data which has the same size as the reference data. In addtion, the simulated dataset will have one group of cells.
simulate_result <- simmethods::Lun_simulation(
parameters = estimate_result[["estimate_result"]],
return_format = "SCE",
seed = 111
)
# nCells: 160
# nGenes: 4000
# nGroups: 1
# de.prob: 0.25
# fc.up.group: 5
# fc.down.group: 0
SCE_result <- simulate_result[["simulate_result"]]
dim(SCE_result)
# [1] 4000 160
head(colData(SCE_result))
# DataFrame with 6 rows and 2 columns
# cell_name group
# <character> <character>
# Cell1 Cell1 Group1
# Cell2 Cell2 Group1
# Cell3 Cell3 Group1
# Cell4 Cell4 Group1
# Cell5 Cell5 Group1
# Cell6 Cell6 Group1
head(rowData(SCE_result))
# DataFrame with 6 rows and 1 column
# gene_name
# <character>
# Gene1 Gene1
# Gene2 Gene2
# Gene3 Gene3
# Gene4 Gene4
# Gene5 Gene5
# Gene6 Gene6
In Lun, we can not set nCells
directly and should set groupCells
instead. For example, if we want to simulate 500 cells, we can type other_prior = list(groupCells = 500)
. For genes, we can just set nGenes
.
Here, we simulate a new dataset with 500 cells and 2000 genes:
simulate_result <- simmethods::Lun_simulation(
parameters = estimate_result[["estimate_result"]],
return_format = "list",
other_prior = list(groupCells = 500,
nGenes = 2000),
seed = 111
)
# nCells: 500
# nGenes: 2000
# nGroups: 1
# de.prob: 0.5
# fc.up.group: 5
# fc.down.group: 0
result <- simulate_result[["simulate_result"]][["count_data"]]
dim(result)
# [1] 2000 500
In Lun, we can not set nGroups
directly and should set prob.group
instead. For example, if we want to simulate 2 groups, we can type other_prior = list(prob.group = c(0.5, 0.5))
. Note that the sum of prob.group
numeric vector must equal to 1, so we can also set prob.group = c(0.3, 0.7)
.
In addtion, if we want to simulate three or more groups, we should obey the rules:
prob.group
vector must always equal to the number of groups.prob.group
numeric vector must equal to 1.For demonstration, we will simulate three groups using the learned parameters. We can set de.prob = 0.2
to simulate 20% genes as DEGs.
simulate_result <- simmethods::Lun_simulation(
parameters = estimate_result[["estimate_result"]],
return_format = "list",
other_prior = list(groupCells = 1000,
nGenes = 3000,
prob.group = c(0.1, 0.3, 0.6),
de.prob = 0.2),
seed = 111
)
# nCells: 1000
# nGenes: 3000
# nGroups: 3
# de.prob: 0.2
# fc.up.group: 5
# fc.down.group: 0
If you encounter the error which is like Warning: NAs producedError in [[<-.data.frame (tmp, paste0(“DEFacGroup”, idx), value = c(5, :**, please set a higher gene number and try again.
result <- simulate_result[["simulate_result"]][["count_data"]]
dim(result)
# [1] 3000 1000
## cell information
cell_info <- simulate_result[["simulate_result"]][["col_meta"]]
table(cell_info$group)
#
# Group1 Group2 Group3
# 100 300 600
## gene information
gene_info <- simulate_result[["simulate_result"]][["row_meta"]]
### the proportion of DEGs
table(gene_info$de_gene)[2]/nrow(result) ## de.prob = 0.2
# yes
# 0.2
We can see that the proportion of differential expressed genes is 0.2 (default is 1). Next, if we want to know the fold change between two groups, we will do division with the groups that we are interested in.
## fc between group2 and group1
fc_group1_to_group2 <- gene_info$DEFacGroup2/gene_info$DEFacGroup1
## fc between group3 and group1
fc_group1_to_group3 <- gene_info$DEFacGroup3/gene_info$DEFacGroup1
## fc between group3 and group2
fc_group2_to_group3 <- gene_info$DEFacGroup3/gene_info$DEFacGroup2
In addtion, users can also specify the foldchange of up-regulated or down-regulated DEGs by fc.up.group
or fc.down.group
.
simulate_result <- simmethods::Lun_simulation(parameters = estimate_result[["estimate_result"]],
other_prior = list(prob.group = c(0.4, 0.6),
de.prob = 0.2,
fc.up.group = 2,
fc.down.group = 0.5),
return_format = "list",
verbose = TRUE,
seed = 111)
# nCells: 160
# nGenes: 4000
# nGroups: 2
# de.prob: 0.2
# fc.up.group: 2
# fc.down.group: 0.5
# Simulating datasets using Lun
# Getting parameters...
# Simulating means...
# Simulating cell means...
# Simulating counts...
# Creating final dataset...
# Sparsifying assays...
# Automatically converting to sparse matrices, threshold = 0.95
# Converting 'counts' to sparse matrix: estimated sparse size 0.82 * dense matrix
# Skipping 'CellMeans': estimated sparse size 1.5 * dense matrix
# Done!
row_data <- simulate_result[["simulate_result"]][["row_meta"]]
### fc.up.group
max(row_data$DEFacGroup1)
# [1] 2
### fc.down.group
min(row_data$DEFacGroup1)
# [1] 0.5