MFA

Here MFA method will be demonstrated clearly and hope that this document can help you.

Estimating parameters from a real dataset

Before simulating datasets, it is important to estimate some essential parameters from a real dataset in order to make the simulated data more real.

library(simmethods)
library(SingleCellExperiment)
# Load data
ref_data <- simmethods::data

MAF can only simulate datasets with bifurcation trajectory, so the estimation step may fail due to the intrinsic characteristics of real data.

estimate_result <- simmethods::MFA_estimation(
  ref_data = ref_data,
  verbose = T,
  seed = 10
)
# Estimating parameters using MFA

Simulating datasets with cell trajectory using MFA

After estimating parameter from a real dataset, we will simulate a dataset based on the learned parameters with different scenarios.

  1. Datasets with default parameters
  2. Determin the number of cells and genes
  3. Visualization

Datasets with default parameters

The reference data contains 160 cells and 4000 genes, if we simulate datasets with default parameters and then we will obtain a new data which has the same size as the reference data.

simulate_result <- simmethods::MFA_simulation(
  parameters = estimate_result[["estimate_result"]],
  other_prior = NULL,
  return_format = "SCE",
  seed = 111
)
# nCells: 160
# nGenes: 4000
SCE_result <- simulate_result[["simulate_result"]]
dim(SCE_result)
# [1] 4000  160

Determin the number of cells and genes

In MFA, we can set nCells and nGenes to specify the number of cells and genes.

Here, we simulate a new dataset with 2000 cells and 2000 genes:

simulate_result <- simmethods::MFA_simulation(
  parameters = estimate_result[["estimate_result"]],
  return_format = "list",
  other_prior = list(nCells = 2000,
                     nGenes = 2000),
  seed = 111
)
# nCells: 2000
# nGenes: 2000
result <- simulate_result[["simulate_result"]][["count_data"]]
dim(result)
# [1] 2000 2000

Visualization

Make sure that you have already installed several R packages:

if(!requireNamespace("dynwrap", quietly = TRUE)){install.packages("dynwrap")}
if(!requireNamespace("dyndimred", quietly = TRUE)){install.packages("dyndimred")}
if(!requireNamespace("dynplot", quietly = TRUE)){install.packages("dynplot")}
if(!requireNamespace("tislingshot", quietly = TRUE)){devtools::install_github("dynverse/ti_slingshot/package/")}

First we should wrap the data into a standard object:

dyn_object <- dynwrap::wrap_expression(counts = t(result),
                                       expression = log2(t(result) + 1))

Next, we infer the trajectory using SlingShot which has been proved to be the most best method to do this:

model <- dynwrap::infer_trajectory(dataset = dyn_object,
                                   method = tislingshot::ti_slingshot(),
                                   parameters = NULL,
                                   give_priors = NULL,
                                   seed = 111,
                                   verbose = TRUE)
# Executing 'slingshot' on '20230816_112844__data_wrapper__XqXBjiGrL6'
# With parameters: list(cluster_method = "pam", ndim = 20L, shrink = 1L, reweight = TRUE,     reassign = TRUE, thresh = 0.001, maxit = 10L, stretch = 2L,     smoother = "smooth.spline", shrink.method = "cosine")
# inputs: expression
# priors :
# Using full covariance matrix

Finally, we can plot the trajectory after performing dimensionality reduction:

dimred <- dyndimred::dimred_umap(dyn_object$expression)
dynplot::plot_dimred(model, dimred = dimred)
# Coloring by milestone
# Using milestone_percentages from trajectory

For more details about trajectory inference and visualization, please check dynverse.