Here dropsim method will be demonstrated clearly and hope that this document can help you.
Before simulating datasets, it is important to estimate some essential parameters from a real dataset in order to make the simulated data more real.
library(simmethods)
library(SingleCellExperiment)
# Load data
ref_data <- simmethods::data
estimate_result <- simmethods::dropsim_estimation(
ref_data = ref_data,
verbose = T,
seed = 10
)
# Estimating parameters using dropsim
After estimating parameter from a real dataset, we will simulate a dataset based on the learned parameters with different scenarios.
The reference data contains 160 cells and 4000 genes, if we simulate datasets with default parameters and then we will obtain a new data which has the same size as the reference data. In addtion, the simulated dataset will have one group of cells.
simulate_result <- simmethods::dropsim_simulation(
parameters = estimate_result[["estimate_result"]],
other_prior = NULL,
return_format = "SCE",
seed = 111
)
# nCells: 160
# nGenes: 4000
SCE_result <- simulate_result[["simulate_result"]]
dim(SCE_result)
# [1] 4000 160
In dropsim, we can set nCells
and nGenes
to specify the number of cells and genes.
Here, we simulate a new dataset with 1000 cells and 1000 genes:
simulate_result <- simmethods::dropsim_simulation(
parameters = estimate_result[["estimate_result"]],
return_format = "list",
other_prior = list(nCells = 1000,
nGenes = 1000),
seed = 111
)
# nCells: 1000
# nGenes: 1000
result <- simulate_result[["simulate_result"]][["count_data"]]
dim(result)
# [1] 1000 1000