Here Simple method will be demonstrated clearly and hope that this document can help you.
Before simulating datasets, it is important to estimate some essential parameters from a real dataset in order to make the simulated data more real. If you do not have a single-cell transcriptomics count matrix now, you can use the data collected in simmethods package by simmethods:data
command.
library(simmethods)
library(SingleCellExperiment)
# Load data
ref_data <- simmethods::data
dim(ref_data)
# [1] 4000 160
Using simmethods::Simple_estimation
command to execute the estimation step.
estimate_result <- simmethods::Simple_estimation(ref_data = ref_data,
verbose = T,
seed = 10)
# Estimating parameters using Simple
After estimating parameter from a real dataset, we will simulate a dataset based on the learned parameters with different scenarios.
The reference data contains 160 cells and 4000 genes, if we simulate datasets with default parameters and then we will obtain a new data which has the same size as the reference data.
simulate_result <- simmethods::Simple_simulation(
parameters = estimate_result[["estimate_result"]],
return_format = "SCE",
seed = 111
)
# nCells: 160
# nGenes: 4000
SCE_result <- simulate_result[["simulate_result"]]
dim(SCE_result)
# [1] 4000 160
head(colData(SCE_result))
# DataFrame with 6 rows and 1 column
# cell_name
# <character>
# Cell1 Cell1
# Cell2 Cell2
# Cell3 Cell3
# Cell4 Cell4
# Cell5 Cell5
# Cell6 Cell6
head(rowData(SCE_result))
# DataFrame with 6 rows and 1 column
# gene_name
# <character>
# Gene1 Gene1
# Gene2 Gene2
# Gene3 Gene3
# Gene4 Gene4
# Gene5 Gene5
# Gene6 Gene6
Here, we simulate a new dataset with 500 cells and 1000 genes:
simulate_result <- simmethods::Simple_simulation(
parameters = estimate_result[["estimate_result"]],
return_format = "list",
other_prior = list(nCells = 500,
nGenes = 1000),
seed = 111
)
# nCells: 500
# nGenes: 1000
result <- simulate_result[["simulate_result"]][["count_data"]]
dim(result)
# [1] 1000 500